Longitudinal mutational analysis of TP53 in plasma circulating tumor DNA in patients with solid tumors in a Phase I study of BI 907828, an MDM2–p53 antagonist

Alexander Peltzer,†1 Raphael Hesse,†1 Minral Gounder,2 Noboru Yamamoto,2 Manish R. Patel,3 Scott Laurie,4 Todd M. Bauer,4 Michael Teufel,5 Junxian Geng,6 Patricia LoRusso8
1Boehringer Ingelheim Pharma GmbH & Co. KG, Department of Translational Medicine & Clinical Pharmacology, Biberach an der Riss, Germany; 2Memorial Sloan Kettering Cancer Center, New York, NY, USA; 3National Cancer Center Hospital, Department of Experimental Therapeutics, Tokyo, Japan; 4Sarah Cannon Research Institute, Florida Cancer Specialists & Research Institute, Sarasota, FL, USA; 5The Ottawa Hospital Cancer Centre, Ottawa, ON, Canada; 6Sarah Cannon Research Institute Tennessee Oncology, Nashville, TN, USA; 7Boehringer Ingelheim Pharmaceuticals Inc; Ridgefield, CT, USA; 8Yale University School of Medicine, Yale Cancer Center, New Haven, CT, USA

Introduction

• Inactivation of p53 can occur due to TP53 mutations or downregulation of wild-type p53 by its primary negative regulator, MDM2.
• BI 907828, an MDM2–p53 antagonist, inhibits the interaction between the tumor suppressor p53 and MDM2. This restores p53 function, leading to p53 target gene induction that may result in cell cycle arrest or apoptosis in tumors with TP53-wt status.
• BI 907828 is currently being evaluated in a Phase Ia/b study in patients with advanced solid tumors (NCT03449381). During dose escalation (Phase Ia), BI 907828 demonstrated a manageable safety profile and early signs of efficacy.
• Here we present data from a longitudinal mutational analysis of TP53 using ctDNA; the objective was to identify if mutations in TP53 can be associated with possible acquired resistance to BI 907828.

Methods

• Blood sample collection for ctDNA analysis was optional, and sampled longitudinally from patients at baseline and every cycle until LAS.
• ctDNA was purified from plasma and analyzed using tumor-specific NGS (custom-made 8-gene panel using KAPA HypraCap technology, including TP53) to identify tumor-derived somatic mutations.
• The limit of detection was determined to be 0.5% mutant allele frequency; common polymorphisms were filtered out.
• Key inclusion and exclusion criteria have been presented previously.

Patients

Key baseline disease and patient characteristics for all pts enrolled to Phase Ia

| Arm A | Arm B
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age, years (range)</td>
<td>53 (22–72)</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>15 (55.2)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td>10 (50.0)</td>
</tr>
<tr>
<td>Asian</td>
<td>15 (55.2)</td>
</tr>
<tr>
<td>Caucasian</td>
<td>19 (65.5)</td>
</tr>
<tr>
<td>African American</td>
<td>1 (3.4)</td>
</tr>
<tr>
<td>ECOG PS 0/1/1 (n, %)</td>
<td>11 (37.1)/16 (52.9)/1 (3.4)</td>
</tr>
<tr>
<td>Prior therapies, median (range)</td>
<td>2 (0–11)</td>
</tr>
</tbody>
</table>

Plasma samples for ctDNA analysis were collected from 46 (81%) patients:
• Baseline plasma samples from 26/54 (48%) patients and LAS samples from 36/54 (70%) patients were analyzed.

Results

• Baseline samples were available from 26/54 patients, whereas LAS were available from 36/54 patients.
• At baseline, most patients (75%) had no mutations in TP53; mutations were found in 4/26 (23%) samples.
• In two patient samples, mutations were found in both tumor and ctDNA, but concurrent results were limited to one patient.
• At LAS:
 - No mutations were found in 10/38 (26%) samples.
 - 1 mutation was found in 12/38 (31%) samples.
 - 2 mutations in 4/38 (10%) samples.
 - 3 mutations in 1/38 (3%) samples.
 - 4 mutations in 3/38 (8%) samples.

Lollipop plot showing ctDNA TP53 mutations at LAS

Key findings and conclusions

- This mutational analysis represents one of the first broad-based assessments of longitudinal ctDNA by NGS for TP53 from a clinical trial of an MDM2–p53 antagonist.
- Preliminary data suggest that BI 907828 does not systematically lead to broad acquisition of resistance by inducing alterations in TP53; however, this needs to be validated in larger data sets.

References

#3036

Presented at the American Society of Clinical Oncology (ASCO), Chicago, IL, USA, June 2–6 2023

This study was funded by Boehringer Ingelheim. The authors were fully responsible for all content and editorial decisions, were involved at all stages of poster development and have approved the final version. The authors did not receive payment related to the development of the poster. Medical writing support for the development of this poster, under the direction of the authors, was provided by Jane Saunders, of Ashfield MedComms, an Inizio Company, and funded by Boehringer Ingelheim.